
Journal of Computational Physics 226 (2007) 688–711

www.elsevier.com/locate/jcp
A numerical method for simulating concentrated rigid
particle suspensions in an elongational flow

using a fixed grid

G. D’Avino a, P.L. Maffettone a, M.A. Hulsen b,*, G.W.M. Peters b

a Dipartimento di Ingegneria Chimica, Universitá di Napoli Federico II, Napoli I-80125, Italy
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Abstract

In this work a new numerical method for concentrated inertialess rigid particle suspensions in a planar elongational
flow using a fixed mesh is presented. The main concept is to randomly relocate a particle on an inflow section of the
domain when it crosses the outflow boundaries. A three-layer domain is considered in order to: (i) develop a small com-
putational domain as the representative sample of the whole suspension, (ii) impose the elongational flow boundary con-
ditions far from the particles, (iii) achieve a steady state (in a statistical meaning). Our scheme uses a time-independent
fixed grid avoiding the difficulties involved in deforming meshes and remeshing of the domain. In this way, computations
can proceed indefinitely and micro-structural fluctuations around a steady state can be studied.

A fictitious domain is implemented in order to easily manage the rigid-body motion. The particles are described by their
boundaries only (rigid-ring description) and the rigid-body motion is imposed through Lagrange multipliers. The bulk
properties are recovered by using an averaging procedure where the traction forces on the particle surface are recovered
by the Lagrange multipliers.

The scheme has been combined with a standard velocity–pressure finite element formulation and 2D simulations of a
large number (150 and 225) of particles in a Newtonian medium are performed. Local as well as bulk properties are eval-
uated and discussed. The results show very good agreement with dilute theory as well as with other numerical simulations
in the literature for higher concentrations.

Our formulation is well suited for viscoelastic suspensions and can be easily extended to 3D simulations.
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1. Introduction

In the last decades, direct numerical simulations (DNSs) techniques have been developed in order to
predict and understand the complex flow of particle-filled fluids. The motion of the fluid is governed by
the (Navier–)Stokes equations and the motion of the particles by the linear and angular momentum
equations of rigid-body dynamics. The coupling of the fluid and the particles is achieved through the
no-slip condition on the particle boundaries and the hydrodynamic forces and torques on the particles.
The hydrodynamic forces and torques are, of course, those arising from the computed motion of the
fluid, and therefore are not known in advance. It has to be pointed out that no approximation for these
forces and torques is made. So, in DNS methods, hydrodynamic interactions are not modeled but
computed.

An increasing interest in rigid particle suspensions can be observed. Typically, in all systems of practical
interest, the concentration of particles is high so they are non-dilute or concentrated. In other words, a
many-particle system should be considered and the hydrodynamic interactions play a crucial role by affecting
the local flow fields, bulk properties and the final behavior of the material.

In order to manage the problem computationally, we need to develop a suited simulation scheme that uses
the smallest domain that still has the same average properties as the whole suspension. Hence, by solving the
flow problem in this domain, we are able to predict the average micro-structure and the bulk properties of the
suspensions, with reduced CPU time and memory.

This idea has been used by Hwang et al. [1,2] where the authors combine Lees–Edwards boundary condi-
tions, i.e. a sliding bi-periodic domain, with a standard velocity–pressure finite element formulation for a New-
tonian suspension as well as a DEVSS/DG (discrete elastic viscous split stress/discontinuous Galerkin) scheme
for viscoelastic suspensions in simple shear flow. According to this scheme, each frame slides relatively to one
another by an amount determined by a given shear rate. So, a frame can be considered as a sample of the
whole suspension and transforms the many-particle suspension into a single unit cell.

Recently, the bi-periodic frame concept has been extended to planar extensional flow [3]. However, in order
to deal with such a flow, a deformation in time of the bi-periodic frame is proposed. As a consequence, after a
certain time, the frames cannot be deformed anymore since the smallest characteristic length of the frame is
comparable with the characteristic dimension of the particles. Hence, it is difficult to achieve a steady state for
this imposed flow field. This is especially true for a viscoelastic fluid at high Weissenberg number, where large
strains are needed before a steady state is obtained. Finally, in the scheme described in [3] remeshing of the
domain is also done in order to keep the aspect ratio of the elements close to one.

In this work, we propose a new simulation scheme that circumvents these problems. The main concept is to
relocate a particle on the inflow boundary of the domain when it crosses the outflow sections. So, no periodic
boundary condition is imposed. In particular, the computational domain is divided into three concentric
square regions: in the internal one the particles move, the micro-structural and bulk properties are evaluated
in this region. So, this region can be considered as a sample of the whole suspension. In the intermediate region
the particles can move as well and, when they cross the outflow boundaries of that region, they are relocated
randomly on one of the two inflow sections of the same region. Finally, the outer region only contains fluid
since particles cannot enter. The elongational flow boundary conditions are imposed on the external bound-
aries of the outer region: so the particles feel the presence of the elongational flow boundary conditions only as
an imposed ‘far field’.

According to this scheme, no deformation of the domain occurs and a time-independent fixed grid can be
used (and no remeshing of the domain is needed). Furthermore, an average steady state can be achieved: we do
not need to stop the simulation since the domain dimensions do not change. Finally, this scheme is suited for
the simulation of viscoelastic suspensions. Indeed, after the relocation of the particles in the intermediate
region, the stress has time to develop before particles enter the internal region where the properties are
calculated.

In this work, we consider a concentrated suspension of rigid, non-Brownian disks in a planar elongational
flow, where the particle and fluid inertia can be neglected. Indeed, a vast literature is based on the inertialess
assumption (see for example the method of Stokesian dynamics [4] for concentrated suspensions in Newtonian
fluids). Our final goal is to compare the results for a Newtonian suspension with the ones where the suspending
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fluid is a melt and can be represented by a viscoelastic model having a very high viscosity. So, the Newtonian
suspensions under investigation are characterized by a high viscosity as well and therefore the inertialess
assumption is appropriate here.

The analysis is carried out for a Newtonian medium. The particle–fluid interactions are taken into account
by implementing a Lagrange multiplier/fictitious domain method (LM/FDM) [5,6]. The force-free, torque-free
rigid body motion of the particles is described by a rigid-ring problem [1,2]. So, a fixed mesh is used for the
computation and the particles are described by their boundaries only, through collocation points. This
description is possible because inertia is neglected. Finally, the rigid-body motion constraints are imposed
through Lagrange multipliers that can be identified as traction forces on the particle surfaces (with a correc-
tion due to the fluid stress inside the object).

Another difference with the works of Hwang et al. [1–3] is that with our scheme a particle is not splitted into
parts since it never crosses the boundary of the whole domain. However, since a particle can cross the sample
internal region, a slight modification of the bulk stress formula is required.

We limit the simulations to two dimensions in order to show the feasibility of the new method based on a
fixed grid. Therefore, the simulations only represent the planar elongational flow of fluids filled with particles
having a long aspect ratio, such as fibers, which are aligned normal to the plane of flow. For more general
flows, like spherical particle suspensions, we need to extend the method to three dimensions. This will be part
of future research and will require iterative solvers and parallel calculations.

Numerical simulations are performed and the local flow fields are presented for a many-particle problem.
The bulk stress is recovered by using a standard averaging procedure [7]. Finally, the bulk rheological prop-
erties are discussed and a comparison with the results of Hwang and Hulsen [3] is carried out. Our results on
the bulk viscosity of the suspension are in very good agreement. Moreover, an anisotropic structure is also
found even if no transient behavior as in [3] is observed.

The paper is organized as follows: in Section 2, the problem definition is presented. The governing equa-
tions for fluid, particles and hydrodynamic interactions are given as well. In Section 3, the weak form for the
whole domain is derived. Moreover, the spatial implementation and time integration algorithms are dis-
cussed. In Section 4, the bulk stress formula is given. In Section 5, the method is validated. A comparison
between the Lagrange multipliers/fictitious domain method and a boundary fitted method is carried out. A
simple test problem is chosen. In particular, local flow fields and bulk stress are exploited. The influence of
the number of collocation points on the accuracy of the solution is also analyzed. Moreover, the relationship
between Lagrange multipliers and traction forces on the particles is discussed. In Section 6, the simulation
procedure is introduced. The computational scheme is presented and particle area fraction and bulk stress
formulas are given. In Section 7, the results for planar extensional flow are presented. A many-particle
problem (150 and 225 particles) is simulated. Local velocity, pressure, stress fields are analyzed and dis-
cussed, by means of snapshots of the simulations. Finally, bulk properties (stress tensor and viscosity)
are evaluated.
2. Modeling

Suspensions consisting of a large number of rigid non-Brownian circular disk particles (2D problem) in pla-
nar elongational flow are considered. A schematic representation of the problem is shown in Fig. 1: many par-
ticles (circles) move in a Newtonian fluid medium. Particles are denoted by P iðtÞ, i ¼ 1; . . . ;N , where N is the
total number of particles in the domain.

A square domain, denoted by X, is considered. On the fluid boundaries, denoted by Ci, i ¼ 1; . . . ; 4, planar
elongational flow boundary conditions are imposed. The Cartesian x and y coordinates are selected such that
the origin is at the center of the domain. The particles move according to the imposed flow and hydrodynamic
interactions: their rigid-body motion is completely defined by the translational velocity, U i ¼ ðU i; V iÞ, and
angular velocity, xi ¼ xik, where k is the unit vector in the direction normal to the x–y plane. Moreover,
for a particle Pi, X i ¼ ðX i; Y iÞ, Hi ¼ Hik are used for the coordinates of the particle center and the angular
rotation, respectively. Here, the governing equations for a Newtonian suspension are presented, for the fluid
domain as well as for the particles.



Fig. 1. Schematic representation of the problem: a square fluid domain (X) filled with many particles (P iðtÞ) is considered. Elongational
flow conditions on the fluid boundaries (Ci) are imposed.
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2.1. Fluid domain

For a Newtonian and inertialess fluid, the momentum balance, the continuity and the constitutive relation
are:
r � r ¼ 0 in X n P ðtÞ; ð1Þ
r � u ¼ 0 in X n PðtÞ; ð2Þ
r ¼ �pI þ 2gD in X n P ðtÞ; ð3Þ
where u, r, p, I , D and g are the velocity, the stress, the pressure, the 2 · 2 unity tensor, the rate-of-deforma-
tion tensor and the viscosity, respectively and P ¼ [P i.

The fluid boundary conditions are given by:
u ¼ U i þ xi � ðx� X iÞ on oP iðtÞ ði ¼ 1; . . . ;NÞ; ð4Þ
u ¼ _�x; v ¼ �_�y on Ci ði ¼ 1; . . . ; 4Þ ð5Þ
assuming that all particles are fully immersed in the fluid. Eq. (4) is the rigid-body condition and x are the
coordinates of the points on the particle surface. Eq. (5) gives the planar elongational flow boundary condi-
tions where _� is the elongational rate. In the absence of inertia, no initial conditions are needed for the velocity
field of the fluid as well as for the particles. Finally, it is sufficient to set the pressure level in one point of the
domain.
2.2. Particle domain

Following [1,2], in this work a rigid-ring description for the particle domain is used. In this way, a particle is
considered as a rigid ring which is filled with the same fluid as in the fluid domain. This description can be used
if the inertia is neglected. So, it is necessary to discretize only the particle boundary, which leads to reduction
in memory requirements and simplifies the implementation. Moreover, as shown later, the traction force on
the particle boundaries can be obtained as a part of the solution, when the rigid-body constraints are imple-
mented through Lagrange multipliers.
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With the rigid-ring description, the equations for a particle Pi can be written as:
r � r̂ ¼ 0 in P iðtÞ; ð6Þ
r � u ¼ 0 in P iðtÞ; ð7Þ
r̂ ¼ �pI þ 2gD in P iðtÞ; ð8Þ
u ¼ U i þ xi � ðx� X iÞ on oP iðtÞ: ð9Þ
Again, Eqs. (6)–(9) are equations for the momentum balance, the continuity, the constitutive relation and the
boundary condition, respectively, which are the same for the fluid domain. Note that we have denoted the fluid
stress tensor inside the particle (r̂) different from the stress tensor in the fluid between particles in order to make a
distinction between the stress tensor inside the ‘real’ rigid particle (r) and the fictitious fluid stress. The solution
of the problem inside a particle is the rigid-body motion itself as applied on the particle boundary [1,2]:
u ¼ U i þ xi � ðx� X iÞ in P iðtÞ: ð10Þ

With this description, the pressure level inside a particle is undetermined/not unique, in theory. However it
turns out that, in the numerical implementation with the fictitious domain method, it is not necessary to spec-
ify the pressure level inside the particle directly. Finally, the movement of particles is given by the following
kinematic equations:
dX i

dt
¼ U i; X ijt¼0 ¼ X i;0; ð11Þ

dHi

dt
¼ xi; Hijt¼0 ¼ Hi;0: ð12Þ
Eq. (12) is completely decoupled from the other equations for circular particles.

2.3. Hydrodynamic interactions

Eq. (4) (and (9) as well) adds (for the 2D case) three additional unknowns for each particle, namely the
translational and angular velocities of the particle. So, it is necessary to consider the balance equations for
drag forces and torques, acting on the particle boundaries. Under the assumptions of absence of inertia
and external forces and torques, the particles are force-free and torque-free, so the balance equations are given
by:
F i ¼
Z

oP iðtÞ
r � n ds ¼ 0; ð13Þ

T i ¼
Z

oP iðtÞ
ðx� X iÞ � ðr � nÞ ds ¼ 0: ð14Þ
In these equations, F i ¼ ðF i;x; F i;yÞ and T i ¼ T ik are the total force and torque on the particle boundaries, n is
the outwardly directed unit normal vector on oP i. As we can see, for the 2D case, (13) and (14) add three equa-
tions to the system.

Eqs. (1)–(3) for the fluid domain with boundary conditions (4) and (5), the corresponding equations for the
particle domain (6)–(8) with boundary condition (9) and the hydrodynamic equations (13) and (14) form a
system in the unknowns: p, u, r, U i, xi. The kinematic equations (11) and (12) are integrated to update the
particle positions and rotations. So, every time-step the problem is solved and the flow fields, rigid-body
unknowns and stresses are evaluated. Next, we need to find an expression for the evaluation of bulk rheolog-
ical properties (bulk stress, bulk viscosity, etc.). This will be presented in Section 4.

3. Weak form and implementation

3.1. Weak form

In this section the derivation of the weak form is presented. In deriving the weak form of the governing
equations, the hydrodynamic forces and torques on the particles can be completely eliminated by combining
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the fluid and particle equations of motion into a single weak equation of motion for the combined fluid and
particle system. This equation is called the combined equation of motion and can be obtained by choosing a
suitable variational space for the velocity which incorporates the rigid-body motion constraint (see [5,8] for
details). This formulation has two important advantages: the first is that the hydrodynamic forces and torques
do not have to be computed or modeled anymore since they cancel in the weak form. The second advantage is
that these schemes are not subject to numerical instabilities as shown in [8].

Extending the combined equation of motion to cover the particle domain, removing the rigid-ring con-
straint from the variational spaces and enforce it as a constraint using the Lagrange multipliers, the weak form
for the whole domain can be obtained:

Find u 2 H 1ðXÞ2; U i 2 R2; xi 2 R; ki 2 L2ðoP iðtÞÞ; p 2 L2ðXÞ ði ¼ 1; . . . ;NÞ such that:
�
Z

X
r � vp dAþ

Z
X

2gDðvÞ : DðuÞ dAþ
XN

i¼1

hv� ðV i þ vi � ðx� X iÞÞ; kiioP i
¼ 0; ð15Þ

Z
X

qr � uA ¼ 0; ð16Þ

hli; u� ðU i þ xi � ðx� X iÞÞioP i
¼ 0 ð17Þ
for all v 2 H 1ðXÞ2; V i 2 R2; vi 2 R; li 2 L2ðoP iðtÞÞ; q 2 L2ðXÞ ði ¼ 1; . . . ;NÞ.
This weak form is at the basis of the fictitious domain method since it includes both the fluid and particle

domain. The rigid-body condition is included in the momentum balance and the constraints are implemented
through Lagrange multipliers, only on the particle boundaries. As a consequence, a fixed, time-independent,
very simple mesh can be used, circumventing the necessity of remeshing and projection, as needed in the ALE
method [9–11].

The solution of Eqs. (15)–(17) gives (u, p, U i, xi) as well as all the Lagrangian multipliers. Then, the particle
positions and rotations can be updated by integrating the kinematic equations (Eqs. (11) and (12)) and the
problem is solved at the next time step. As previously discussed, it is not necessary to specify initial conditions
for u, U i and xi since both fluid and particles are inertialess. Instead, it is mandatory to set the pressure level,
for example by specifying the pressure in a point of the domain. The resulting system is linear in the state vari-
ables and symmetric. It is solved by a direct method based on a sparse multi-frontal variant of Gaussian elim-
ination (HSL/MA57) [12]. However, a direct method can be used only for 2D simulations. For 3D flows
iterative solvers will be needed to lower the memory requirements.

3.2. Spatial discretization

The fictitious domain allows to use a very simple, time-independent mesh for the discretization of the whole
domain. In this work, a rectangular regular mesh with bi-quadratic interpolation for the velocity and bi-linear
continuous interpolation for the pressure is used (Q2 � Q1 elements). It is well known that this kind of element
satisfies the LBB condition. Due to the discontinuity of the pressure field between the fluid and particle
domain a discontinuous interpolation for the pressure should preferably be used [1,2,13]. However, as we will
discuss later, even if we use a discontinuous pressure interpolation (Q2 � P d

1 element), the pressure value on the
particle surface cannot be recovered accurately.

From the rigid-ring description, the particles are discretized by their boundaries. The weak form of the
rigid-ring description (Eq. (17)) has been approximated by point collocation:
hli; u� ðU i þ xi � ðx� X iÞÞioP i
�
XN c

k¼1

li;k � fuðxkÞ � ðU i þ xi � ðxk � X iÞÞ; ð18Þ
where Nc is the number of collocation points on the particle surface, xk are the coordinates of the kth collo-
cation point and li;k the corresponding Lagrange multiplier. This boundary discretization is very simple to
implement and, as shown in Section 5, stresslets on the particles can be recovered by Lagrange multipliers val-
ues. It is important to point out that the number of collocation points is crucial for the accuracy of the bulk
stress: too few points cannot represent adequately the rigid-body motion while too many collocation points
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lead to an overestimation of the surface stress integrals. A detailed analysis about the choice of Nc will be car-
ried out in Section 5.

In Fig. 2 a comparison between a typical unstructured mesh for a boundary fitted method (on the left), and
the fictitious domain mesh for the same particle configuration (on the right) is shown. In the first case only the
fluid domain is discretized: no solution is obtained inside the particles. In the fictitious domain, however, we
can observe a mesh inside the objects as well. As a consequence, after solving the equations, pressure and
velocity (and stress) are also evaluated in the nodes inside the particles. Although it is not possible to accu-
rately recover the pressure (and stresses) on the particle surface (see Section 5), a simple regular mesh can
be used, giving the opportunity to solve very complex interaction problems in a simple way. Also, the discret-
ization of the particle boundaries through collocation points is shown in Fig. 2. Finally, in the same figure, a
typical Q2 � Q1 element is shown.

3.3. Time integration

For a given initial particle configuration, Eqs. (15)–(17) can be solved and then it is possible to update the
particle positions and rotations. To do this, it is necessary to integrate the kinematic equations (11) and (12).
An explicit time integration scheme has been implemented: the Euler method at the first time step:
Fig. 2.
describ
Xnþ1
i ¼ Xn

i þ DtUn
i ð19Þ
and the Adams–Bashforth method for the next time steps:
Xnþ1
i ¼ Xn

i þ Dt
3

2
Un

i �
1

2
Un�1

i

� �
: ð20Þ
4. Bulk stress

As previously discussed, we are interested in the rheological properties of concentrated suspensions in pla-
nar elongational flow, such as the stress tensor, viscosity, etc. The flow and stress fields obtained from the
equations just presented are local. Local values of pressure and velocity give information about the stress dis-
tribution around the particles and thus also about the hydrodynamic interaction between particles. However,
it is also important to evaluate global properties (bulk properties) in order to make predictions about global
behavior of such materials. To do this, we have to consider a bulk stress expression related to local quantities.
We will consider the Batchelor formula [7]. The bulk stress tensor can be calculated as the sum of the fluid
contribution and the particle contribution, as follows (for the 2D case):
hri ¼ 1

A

Z
A

r dA ¼ 1

A

Z
Af

r dAþ 1

A

Z
oAp

r � nx ds; ð21Þ
where h�i is an area average quantity in an area A, Af is the area occupied by the fluid and oAp is the total
particle surface. For the Newtonian constitutive equation (Eq. (3)), the bulk stress can be written as:
Comparison between an unstructured mesh (left) and a fictitious domain (right). In the fictitious domain method the particles are
ed by their boundaries through collocation points (rigid-ring description). A typical Q2 � Q1 element is shown as well.
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hri ¼ hrif þ
1

A

Z
oAp

tx ds ¼ �hpifI þ 2ghDi þ 1

A

Z
oAp

tx ds; ð22Þ
where t is the traction force on the particle surface and h�if ¼ 1=A
R

Af
�dA is a weighted area average quantity in

Af . Of course, hDi ¼ hDif because the rate-of-deformation tensor is zero inside the particle domain. In Eq. (22)
the first two terms of the right-hand side represent the fluid contribution and the third term is the contribution
of all particles.

We need the stress tensor on the particle boundaries in order to calculate the integral term in Eq. (22). How-
ever, as shown in the next section, the fictitious domain method cannot accurately evaluate the stress on the
particle boundaries due to the discontinuity of the pressure and velocity gradients at the particle boundaries.
This problem is circumvented by considering the relation between the Lagrange multipliers and traction forces
on the boundary of a particle. For a rigid-ring description, it has been shown [1] that the Lagrange multipliers
are related to the traction force on the boundary plus the stress contribution of the fluid inside the rigid ring:
Z

oAp

tx ds ¼ hk; xi þ
Z

Ap

r̂ dA; ð23Þ
where:
Z
Ap

r̂ dA ¼ �
Z

Ap

p dAI þ
Z

Ap

2gD dA: ð24Þ
Note that, in theory, the fluid inside the rigid ring moves like a rigid body and that D ¼ 0 inside the rigid ring.
In the numerical implementation this is only approximately true. However, the contribution of the rate-of-
deformation tensor can still be neglected (see Section 5) and only the pressure contribution has to be calculated
by performing an integration on the particle domain. By combining Eqs. (22) and (23), we can calculate the
bulk stress as follows:
hri ¼ hr̂i þ 1

A
hk; xi; ð25Þ
where hr̂i is the average over the full domain (fluid + particles) of the fluid stress tensor (we extended the def-
inition of r̂ with r̂ ¼ r in the region between the particles).

The fluid contribution to the bulk stress can be recovered as follows:
hrif ¼ hr̂i �
1

A

Z
Ap

r̂ dA; ð26Þ
whereas the particle contribution in Eq. (22) can be computed using Eq. (23). It should be noticed that if one is
interested in the bulk stress, it is not necessary to evaluate the integral of fluid stress inside the particles. In-
stead, if one needs the fluid and particle contribution separately, the integral of fluid stress tensor inside the
objects is required.

Finally, it is important to point out that Eq. (25) is valid only if the particles are completely immersed in
the computational domain. In our simulation scheme, the particles cross the boundaries of the domain where
the bulk properties are computed also. Therefore, a slightly change in the area A will be made, as shown in
Section 6.
5. Code validation

5.1. Local fields

The code has been validated through a comparison with a boundary fitted method (BFM) using a commer-
cial code (PolyFlow�). First, pressure and velocity fields have been investigated. A simple system as test prob-
lem is chosen: a single particle is collocated at the center of a square domain; on the sides of the square planar
elongational boundary conditions are imposed (_� ¼ 0:5) and a unit viscosity is chosen. The radius of the par-
ticle is chosen equal to 0.05 and the square side is 20 times this radius (Rp ¼ 0:05; Lx ¼ Ly ¼ 1:0). In order to
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preserve the symmetry of the problem, the particle does not move or rotate, so the no-slip boundary condi-
tions on the particle surface for BFM are u ¼ v ¼ 0. Of course, the fictitious domain method (FDM) does
not need to specify particle boundary conditions because the no-slip conditions are imposed through Lagrange
multipliers on the collocation points. A very fine triangular mesh is used in the BFM, finer close to the particle
where larger gradients are expected (typical element size close to the particle is 0.005, i.e. 10 times smaller than
the particle radius). A regular square mesh for FDM is used. The side of the square element is chosen 1/100 the
square domain so a 100 · 100 grid is considered. The particle surface is discretized by 28 collocation points,
chosen equally distributed on the particle boundary. This choice corresponds approximately to one point per
element. As shown later, this distribution of collocation points is the optimal choice for this particle radius/
element dimension ratio. The pressure is set to zero in the bottom-left corner of the square domain. Finally, a
quadratic interpolation for the velocity and linear continuous interpolation for the pressure is chosen for
BFM. The steady state problem is solved by means of BFM and FDM and pressure and velocity fields are
compared.

In Fig. 3, the pressure and velocity behavior along the positive x-axis is shown. First of all, notice that the
FDM solution has field values also inside the particle. The velocity magnitude predicted by FDM (open cir-
cles) matches the BFM one (solid line). Moreover, FDM predicts a zero-value for the velocity inside the par-
ticle (the particle does not move), as expected. The results are different for the pressure field. Both methods
predict a pressure value near zero far from the particle (of course the set pressure level on the external fluid
boundaries is expected). Approaching the particle, a monotonically decreasing behavior is predicted by the
BFM solution that matches the FDM solution up to a small distance from the particle surface (�0.01).
The BFM solution shows a minimum value on the particle surface whereas for the FDM case the pressure
increases slightly. It has to be pointed out that: (i) a different value of pressure is predicted on the particle
boundary and (ii) the pressure inside the particle is not constant (and is not zero everywhere).

This different behavior can be justified by considering that the pressure is discontinuous across the particle
boundary. The BFM ‘‘doesn’t see’’ this discontinuity since only the fluid domain is considered; the interior of
the particle is not a part of the solution. Instead, in the FDM, the particle domain is discretized as well and, to
take into account the discontinuity, a very fine mesh close to the particle surface is required. Indeed, since the
interpolating functions are continuous inside an element, a finer mesh can reduce the distance where the pres-
sure goes from the minimum to zero value. However, the pressure value on the surface cannot be predicted as
accurately as a BFM. Of course, the stress tensor is affected by the same problem, since it has a pressure con-
tribution (see Eq. (3)). As a consequence, the bulk stress cannot be accurately evaluated using Eq. (21) (or
(22)) but we will use Eq. (25) where only the stress over the total domain and the Lagrange multipliers are
required.
Fig. 3. Velocity (left) and pressure (right) field on the positive x-axis, as predicted by the boundary fitted method (solid line) and a
fictitious domain method (open circles).
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A discontinuous interpolation for the pressure has also been implemented (Q2 � P d
1 element). The results

(not presented) show the same behavior: the pressure predicted by the FDM follows the BFM one up to a
very close distance from the particle boundary, then goes up. Therefore, a discontinuous interpolation for
the pressure is not able to predict the value of pressure on the particle boundary either, since, the pressure
is discontinuous between the elements but continuous inside an element. In this work, a continuous interpo-
lation is used.

5.2. Bulk stress

For the rigid-ring description, only the boundaries of the particle domain need to be discretized. The rigid-
body motion is enforced through Lagrange multipliers, by means of collocation points. Moreover, we can
recover the bulk stress of the suspension from the Lagrange multipliers, as stated in the previous section.

In this subsection, we show that the number of collocation points is crucial for the accuracy of the bulk
stress tensor. Of course, by fixing the number of collocation points, the orientation of the collocation point
grid on the particle boundaries should not affect the bulk stress value. We will show this as well. Again,
the same test problem is considered.

In Fig. 4, the xx-component (full circles) and the absolute values of the yy-component (open circles) of the
bulk stress versus the number of collocation points (Nc) are shown for a fluid viscosity g = 1. The straight line
is the value of the bulk stress obtained by a boundary fitted method. On the left, the results for a 50 · 50 grid
are plotted. On the right, a twice finer grid is considered. In both cases, the trend is upwards. A small number
of points leads to an underestimation of the bulk stress. On the other hand, after using a large number points
an overestimated stress value is obtained. Moreover, after a critical Nc value, the bulk stress does not increase
anymore. Note that the fluid contribution to the bulk stress has a value of 1. The particle contribution is much
smaller but since the error can mostly be attributed to the error in the particle contribution, the error for a
large number of points is approximately 6% and 2% in the 50 · 50 and 100 · 100 grid, respectively. An optimal
value of Nc, say N c;opt, exists (N c;opt ffi 15 for a 50 · 50 mesh, N c;opt ffi 28 for a 100 · 100 mesh), where the error
is minimal. These optimal values correspond to about one collocation point for each element, in agreement
with Hwang et al. [1,2]. Of course, N c;opt depends on the grid resolution as well as on the dimensions of the
particles. Since we will change the radius of the particles, a preliminary analysis on the optimal choice of
Nc is carried out. For each radius exploited we solve the test problem for different Nc and we compare the
results with the bulk stress from the BFM. Then, N c;opt is evaluated and the number of the collocation points
of the particles in the suspension is set equal to N c;opt.
Fig. 4. Bulk stress as a function of the number of collocation points for 50 · 50 (on the left) and 100 · 100 (on the right) grid. The close
circles refer to the xx-component whereas with the open circles the absolute value of the yy-component is depicted. The straight line is the
BFM prediction.
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Next, we check whether the bulk stress is independent of the orientation of the collocation point grid. Let us
consider again the simple test problem of one particle at the center of the domain, with the same parameters
but with 30 collocation points instead of 28. Initially, we choose equally distributed points starting from the
top of the particle (see Fig. 5, left). The steady state problem is solved and the bulk stress is calculated as stated
in Eq. (25). The same problem is solved, but this time the collocation points are rotated by an angle h with
respect to the previous configuration, as shown in Fig. 5, right. This procedure is repeated for many h and
the results are plotted in Fig. 6 (full circles represent the xx-component of the bulk stress whereas open circles
are the absolute value of the yy-component). The phase shift angle h ranges in Ih ¼ ½0; p=15� since, for N c ¼ 30
and for different h, the same configurations can be recovered. The straight line is the bulk stress calculated by
the boundary fitted method. We can see that the quantities plotted are nearly independent of the rotation of
the collocation point grid and they match the bulk stress evaluated by means of the BFM. So, the orientation
of the grid does not affect the bulk stress. Although in our simulations we use h = 0, the results show that the
accuracy of the bulk stress is not related to the specific symmetry of the collocation points with respect to the
fluid mesh. This also indicates that the collocation method can be easily extended to non-circular particles,
where the orientation of the collocation points cannot be fixed.

5.3. Fluid and particle contribution to the bulk stress

A validation of Eqs. (23) and (26) for recovering the particle and fluid contribution is carried out. By per-
forming the procedure previously discussed, the traction force term (from Eq. (23) divided by the area A) and
hrif (from Eq. (26)) are plotted as a function of h in Fig. 7 (with the same meaning of the symbols as in Fig. 6).
Notice that in both integrals the contribution of hri inside the particle is taken into account. Again, the quan-
tities plotted are nearly independent of the rotation of the collocation points grid and they match the fluid and
particle contribution to the bulk stress evaluated by means of the BFM.

Finally, the integral of the pressure inside the particle (divided by the area A) as a function of h is shown in
Fig. 8. A Monte Carlo integration has been used, as the Gaussian quadrature formula is difficult to implement.
The integral of D has also been evaluated and it is about 10�5, for every h. The values are not small compared
to the particle contribution. They also depend on the angle h, which stresses the fact that the fluid pressure
inside the particle has a numerical origin. Hence, we conclude that the internal stress integral (Eq. (24)) is
not small and fully dominated by the pressure term. As a consequence, the D term can be neglected.

In conclusion, the fluid and particle contribution to the bulk stress can be evaluated using Eqs. (23) and (26)
together with Eq. (23), where the integral of D inside the particle can be neglected. If only the total bulk stress
is required, Eq. (25) can be used and no integration inside the particle is necessary.
Fig. 5. Collocation point distribution on the boundary of a particle located at the center of the square domain. 30 equally distributed
points are considered. On the left, the first collocation point lies on the highest point of the circle. On the right the same grid is rotated of
h ¼ 10�.



Fig. 6. Bulk stress versus the phase shift angle. The close circles refer to the xx-component whereas with the open circles the absolute value
of the yy-component is depicted.

Fig. 7. Fluid (on the left) and particle (on the right) contributions to the bulk stress. These quantities have been obtained by using Eqs.
(26) and (23) (divided by the area A), respectively. The close circles refer to the xx-component whereas with the open circles the absolute
value of the yy-component is depicted.
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6. Simulation procedure

6.1. Basics

In this section, the simulation procedure is presented. The basic idea is to simulate a computationally small
domain that is able to describe the bulk properties of the suspension. For this purpose, (i) a sufficiently high
number of particles is required and (ii) only the hydrodynamic interactions should influence the particles or, in
other words, the particles should not feel the presence of the boundary conditions imposed on the external side
of the square domain.

Let us consider an unfilled Newtonian fluid in a planar elongational flow, as depicted in Fig. 9. The typical
streamlines are portrayed and two inflow and two outflow sections can be distinguished (see also Eq. (5)).
Now, let us insert rigid particles inside the fluid. For simplicity, we will consider three particles only. The sim-
ulation procedure is schematized in Fig. 10.

In this picture, four time frames of the procedure are shown. Initially (first frame, t = 0), the particles are
positioned randomly inside the fluid. Each time step the governing equations are solved, local fields can be



Fig. 8. Integral of the fluid pressure inside the particle (divided by the area A) versus the phase shift angle. A Monte Carlo integration has
been used.
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evaluated and the particle positions are updated. The particles will move according to the streamlines and the
hydrodynamic interactions as well (second frame). In the next time step, the particles will change configuration
again (third frame). Note that the particle number ‘‘2’’ is very close to the right boundary of the domain, so, in
the next time step, it would partly go out. Then, in the next time step, the particle ‘‘2’’ is randomly relocated on
one of the two inflow sections (fourth frame). It is important to point out that the inflow section is randomly
chosen as well as the position of the particle on this section. After the relocation, the equations are solved
again and the particle positions are updated as stated by the kinematic equations, and so on. When a particle
is relocated, its position in the next time step cannot be updated using the Adams–Bashforth algorithm (Eq.
(20)), since the velocity in the previous time step (before the relocation) is required. So, only for this step, the
Euler method (Eq. (19)) is used.

A schematic representation of the computational domain used in our simulations is depicted in Fig. 11.
Three different regions can be distinguished: an internal region (A-region), an intermediate region (B-region)
and an external region (C-region).

In the A-region the particles can move and only in this region the bulk properties are evaluated. So, this
region can be considered as a sample for the whole suspension.
Fig. 9. Schematic representation of the streamlines for a unfilled Newtonian fluid in a planar elongational flow. Two inflow sections and
two outflow sections can be distinguished.



Fig. 10. Scheme of the simulation procedure: (a) initially, the particles are randomly distributed in the fluid; (b) the particles move
according to the streamlines and hydrodynamic interactions; (c) the particle ‘‘2’’ is close to the boundary; (d) the particle ‘‘2’’ is randomly
relocated on one of the two inflow sections.
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In the B-region the particles can move as well and, when they cross the outflow boundaries of it, they are
relocated randomly on one of the two inflow sections of the same region. Therefore, the particles in this region
affect the particles in the sample A-region, as should be because the sample region should be surrounded by the
remainder part of the suspension. Moreover, for viscoelastic simulations, this region is mandatory because the
stress surrounding the particles, after the relocation, needs time to develop before the particles enter in
the A-region in order to achieve a ‘‘developed’’ state (in a statistical meaning). However, viscoelasticity is
not a topic in this paper.

The C-region is particle free, i.e., no particles can enter such region. This region is indeed necessary to avoid
that particles can approach the elongational flow boundary condition, Eq. (5), which are imposed on the exter-
nal boundaries of C-region. In the absence of the C-region strong fluctuations in the pressure field are
observed that result from the incompatible rigid body motion of the particle and the imposed elongational
boundary conditions. The width of C-region has to be chosen large enough with respect to particle radius
to avoid these large artificial fluctuations.
Fig. 11. Schematic representation of the computational domain. The particles can move in the A- and B-regions. Only in the A-region the
bulk calculations are performed. When a particle crosses the outflow sections of the B-region, it is relocated on the inflow sections of the
same region. The elongational flow conditions are imposed on the C-region external boundaries.
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As explained below, the particle area fraction (/) in the A-region for this scheme changes in time. Indeed,
the number of particles in the A-region is not constant. Therefore, simulation of very dilute systems
(0:0 < / < 0:05) must be performed sufficiently long in order to get accurate statistical averages.

6.2. Particle area fraction and bulk stress

All the calculations concerning particle area fraction, viscosity and bulk stresses are performed in the
A-region of the computational domain, even if the particles can move in the middle region as well. So a sit-
uation where particles are partially inside the A-region can occur (see the particle ‘‘2’’ in Fig. 11).

As a consequence, the particle area fraction and bulk stress evaluations are not trivial. For each particle
configuration (=each time step), the particle area fraction is calculated as follows:
Fig. 12
area in
/ ¼
PN int

i¼1 pR2
p;i þ

PN cross

i¼1 Ac;i

AA-region

: ð27Þ
The first summation refers to the particles that are completely inside the A-region and N int is the number of
these particles. The second summation takes into account the areas inside the A-region of the particles crossing
this region (marked areas in Fig. 12). Therefore, in Eq. (27), N cross is the number of the particles crossing the
boundaries and Ac;i is the area inside the A-square of these particles. Finally, AA-region is the area of the A-re-
gion. The marked areas in Fig. 12 are evaluated by implementing geometric rules (P c;i�1 and P c;i particles in the
figure) or through a Monte Carlo integration if the particle crosses the corner of the A-region (P c;iþ1 particle in
the figure).

The bulk stress formula is slightly more complicated. The bulk stress expression, Eq. (25), is valid only if the
particles are completely immersed in the domain. However, if a particle crosses the boundary of the domain
where the bulk properties are evaluated (A-region), the contribution of the particle is the stress integral on the
part of the particle domain that is inside this region. The ‘real’ stress inside a rigid particle is unknown and it is
not possible to compute the stress contribution of such a particle. So, we have to modify the domain such that
all particles are fully included in the domain, but the ‘average’ domain (in time and space) should still approx-
imate the A-region.

Let us consider Fig. 13. The new computational domain is enclosed by the bold line: it is given by the
A-domain plus the external part of the particles crossing the square boundaries and with the center inside
the square (diagonal marked areas) minus the internal part of the particles crossing the square boundaries
and with the center outside the square (square marked areas). So, a particle gives a contribution to the bulk
stress only if it is completely inside the A-region or if it crosses the boundary of the A-region and has the center
inside it. As a consequence, when a particle crosses the A-region inflow boundary, it will not give contribution
until its center is inside this region and vice versa for the outflow boundary. In this way, on the average in time,
the right contribution to the bulk stress of the particles crossing the A-region can be recovered.

According to this change, we can apply Eq. (25) to the new extended domain. So, the bulk stress formula
can be written as:
. Relative positions of the particles crossing the boundaries of the A-region. The summation of marked regions gives the particle
side the square of these particles.



hri ¼

R
A-region

r̂ dA�
RP

Ac�int
p dAI þ

RP
Ac-ext

p dAI þ
PN intþN c-int

i¼1 hk; xii
AA-region þ

PN c-int

i¼1 Ac-int;i �
PN c-ext
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; ð28Þ
where N c-int and N c-ext are the number of particles crossing the boundaries with the center inside and outside
the A-region, respectively; Ac-int and Ac-ext are the areas shown in Fig. 13. We have some remarks on Eq. (28): (i)
the area of the extended domain is given by the denominator of the formula, (ii) hr̂i is split into
hr̂iA-region þ hr̂iAc-int

� hr̂iAc-ext
, (iii) the last two terms, i.e. hr̂iAc-int

� hr̂iAc-ext
, are approximated by using the pres-

sure term only, similar to procedure for approximating Eq. (24).
To apply this formula, one needs to evaluate the integral of the pressure on Ac-int and Ac-ext. This integral is

calculated again by performing a Monte Carlo integration. For many particles, this method could be expen-
sive in computational time. However, 10,000 random points are shown to be sufficient for a good accuracy.

7. Results



Fig. 14. Mesh used in the simulations. A- and B-regions are discretized through a regular square mesh. A trapezoidal coarser mesh is used
for C-region, since the particles cannot enter in this region.

Table 1
Mesh parameters

Symbol Description Value

lx,A Length of the A-region in the x-direction 1.0
ly,A Length of the A-region in the y-direction 1.0
nx,A Number of elements of the A-region in the x-direction 100
ny,A Number of elements of the A-region in the y-direction 100
lx,B Distance between the A- and B-regions in the x-direction 0.25
ly,B Distance between the A- and B-regions in the y-direction 0.25
nx,B Number of elements between the A- and B-regions in the x-direction 25
ny,B Number of elements between the A- and B-regions in the y-direction 25
lx,C Distance between the B- and C-regions in the x-direction 0.25
ly,C Distance between the B- and C-regions in the y-direction 0.25
nx,C Number of elements between the B- and C-regions in the x-direction 7
ny,C Number of elements between the B- and C-regions in the y-direction 7
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All the simulations are performed with _� ¼ 0:5, g ¼ 1:0, Dt ¼ 0:05. No artificial repulsive force is imple-
mented because particle collisions hardly occur, when choosing a sufficiently small time step and fine mesh.
Anyway, when a collision occurs the particles slightly overlap. The overlapping leads to a single bigger particle
with about zero stress inside: the bulk properties are hardly affected from this configuration.1 Moreover, the
particles can also separate again. The contour plots (for _�t ¼ 2:5) of the magnitude of the velocity vector, pres-
sure and xx-component of the stress tensor are depicted in Figs. 16–18, respectively, for a total of 150 equal-
sized particles (Rp ¼ 0:03). In these pictures, only the A-region is shown.

First of all, we can see that the presence of the particles modifies the circular concentric velocity contours
that is typical for an unfilled fluid in an elongational flow. Moreover, the strong influence of the hydrodynamic
interactions between the particles is clear: the objects, especially at the center of domain, do not follow the
streamlines but the motion is modified by the presence of the other particles.
1 We confirmed this by using a repulsion force according to [5]. The overlapping is reduced, as expected, but the bulk stress is hardly
affected: the difference is within the statistical fluctuations.



Fig. 15. Initial random distribution of a 150-particle system (Rp ¼ 0:03). Only the A- and B-regions are filled.

Fig. 16. Contour plot of the velocity magnitude for the 150-particle system ð_�t ¼ 2:5Þ.
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The local pressure field (see Fig. 17) shows the highest values (white zones) along the vertical direction
between two particles and the lowest values along the horizontal one (dark regions). This agrees with the dilute
theories. Of course, the local stress tensor rxx (see Fig. 18) shows an opposite behavior. Finally, pressure and



Fig. 17. Contour plot of the pressure for the 150-particle system ð_�t ¼ 2:5Þ.

Fig. 18. Contour plot of the xx-component of the stress tensor for the 150-particle system ð_�t ¼ 2:5Þ.
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stress are larger in absolute value if the particles are close to each other. This effect leads to an increase of the
viscosity with increasing the particle area fraction (see below).

In Fig. 19, the particle area fraction in the A-region versus time is plotted. As mentioned earlier the number
of particles in that region is not constant. As a result the particle area fraction is also not constant, but it is a
continuous function of time due to the way the particles on the boundary of the A-region are taken into
account (see Eq. (27)).

The xx- and yy-components of the bulk stress tensor are shown in Fig. 20. Contrary to the particle area
fraction, these functions are discontinuous. The reason can be understood considering the formula for the
evaluation of the bulk stress, Eq. (28). When a particle crosses the boundaries of the A-region and the center
is outside this region, it does not give a contribution to the bulk stress. As soon as the center of the particle is
inside the A-region, the contribution of the particle is immediately taken into account. This leads to a ‘‘jump’’
into the bulk stress components. However, this jump is relatively small because the contribution of only one
particle is only a small part of the total stress. Averaging the stress in time will smooth out these jumps.
Fig. 19. Particle area fraction as a function of the strain for the 150-particle system and Rp ¼ 0:03. The particle area fraction is evaluated
only into the A-region where the number of particles is not constant (Eq. (27)). Indeed, /ð_�tÞ is a continuous function of the time.

rain for the 150-particle system. These components are
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Fig. 20 clearly shows that the two components of the bulk stress fluctuate around a mean value. However,
no transient behavior occurs contrarily to the results of Hwang and Hulsen [3].

The average values of the stress components over 2000 time steps are: �rxx ¼ 1:603 and �ryy ¼ �1:656. Hence,
a deviation between the absolute values of the average stress components exists (we verified that this discrep-
ancy is independent from the chosen number of the time steps). This suggests the existence of an anisotropic
structure, as reported in [3]. In order to verify this anisotropy, we use the same method of [3], by introducing
an average horizontal and vertical distance between the two closest particles. The horizontal distance for each
particle to the others is defined by considering the horizontal distance to the closest particle within an angular
window of 	45� about the x-axis. The vertical distance is defined similarly but now using 	45� about the
y-axis. By evaluating the two distances for every particle and by averaging over the total particle number, the
plot in Fig. 21 is obtained. Firstly, no transient phase is observed. Furthermore, the distances fluctuate around
two mean values that are 0.111 for the horizontal distance and 0.106 for the vertical one. So, we can conclude
that a small anisotropy in the structure exists: the particles are slightly farther apart along the horizontal direc-
tion than along the vertical one. Note that our calculations predict an anisotropy less pronounced than in [3]
(the deviation between the two average distances is about 4% of their average value whereas it is 14% in [3]).

As expected, the xy-component of the stress tensor (not shown) fluctuates around a mean value that is very
close to zero (the fluctuations are about ±0.03–0.04).
Fig. 21. Average horizontal and vertical distances between the two closest particles as a function of the strain (evaluated according to [3]).
Fluctuations around a mean value can be observed and no transient phase occurs.

Fig. 22. Relative bulk viscosity as a function of the strain for the 150-particle system. The viscosity is evaluated only in the A-region where
the number of particles is not constant (Eq. (29)).
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Finally, in Fig. 22, the relative bulk viscosity
Fig. 23
circles)
of part
g1;r ¼
g1

4g0

¼ rxx � ryy

_�eff

� 1

4g0

ð29Þ
is plotted. In Eq. (29), rxx and ryy are the xx- and yy-components of the bulk stress tensor, g0 is the zero-shear-
rate viscosity and _�eff is an effective elongational rate evaluated by performing the integral of D over the
A-region for every particle configuration. Of course, _�eff is a function of time since the particle distribution
changes each time step. The fluctuations in _�eff are small and the time average value is slightly below the im-
posed _�. For example, for / ¼ 0:277 we find the average value of _�eff ¼ 0:485. The factor ‘‘4’’ in Eq. (29) is due
to the bi-dimensional Trouton ratio. A similarity between particle area fraction and viscosity trends can be
noticed, which confirms what said previously: a higher particle area fraction increases the bulk viscosity.

It is possible to recover the average properties of suspension by averaging over a sufficient high number of
configurations (=time steps). In our simulations, 2000 time steps are considered to be enough since the average
values do not change anymore. In Fig. 23, the results are shown. In particular, the average relative bulk
viscosity:
�g1;r ¼
�g1

4g0

¼ rxx � ryy

_�eff

� �
� 1

4g0

ð30Þ
versus the average particle area fraction is plotted. The dashed line refers to the well-known Einstein predic-
tion for dilute systems (for the 2D case) [14]:
gEin ¼
�g1

4g0

¼ 1þ 2/ ð31Þ
that is valid for / 6 0:05. For higher particle area fractions, hydrodynamic interactions cannot be neglected
anymore. The circles represent our predictions for 150 (full circles) and 225 (open circles) particles: each circle
corresponds to a simulation and the particle area fraction is varied by changing the particle radius. Strongly
dilute systems can be simulated by performing sufficiently long simulations in order to correctly recover the
average properties. However, small particle area fractions should be obtained by reducing the number of par-
ticles. Since reducing the radius of the particles leads to a too few number of collocation points on the particle
boundaries (for N p ¼ 225 and Rp ¼ 0:02 we have used N c ¼ 12 that is the lower limit for a good discretization
of particle curvature). Therefore, the points for / ffi 0:03; / ffi 0:054; / ffi 0:08 are obtained by considering
Np ¼ 20; N p ¼ 40; Np ¼ 60, respectively, and Rp ¼ 0:03 (open diamonds). Finally, the solid line is obtained
by connecting the viscosities for Np ¼ 150 (full circles) and for the dilute system (open diamonds) with straight
lines.
. Relative bulk viscosity as a function of the particle area fraction for a 150-particle (full circles) and 225-particle system (open
. Hwang and Hulsen results [3] are plotted as well (open squares). The dilute systems are simulated by considering a small number
icles (open diamonds).
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Our predictions show an increasing viscosity with increasing the particle area fraction. The trend is not lin-
ear but exponential, as found experimentally. The results for 225 particles match the 150 particles ones: 150
particles are sufficient to describe adequately the bulk properties of the suspension. Moreover, for dilute sys-
tems, the curve approaches the Einstein solution, as expected.

Finally, in the same figure, a comparison with the results of Hwang and Hulsen [3] is shown (open squares).
As we can see, our predicted viscosity curve is slightly above the Hwang and Hulsen one. However, it is impor-
tant to point out that the viscosities reported by Hwang and Hulsen refer to the initial random distribution of
the particles in the bi-periodic domain and they found an increasing transient behavior in time (which our sim-
ulations do not predict). Considering the uncertainty in the steady state value in their results we think the
agreement is very good.

8. Conclusions

In this work, a new simulation scheme for direct simulation of concentrated particle suspensions has been
presented and implemented. Our simulation scheme is based on a three-layer domain that is able to: (i) con-
sider a small domain as a sample of the suspension, (ii) impose the planar elongational flow boundary condi-
tions sufficiently far from the particles and (iii) calculate the steady state properties (in a statistical meaning) of
the suspension. We do not need to deform the computational domain and no periodic boundary condition is
imposed as in [3].

A steady state can be achieved by relocating the particles on the inflow sections when they cross the outflow
sides of the domain.

We used a fictitious domain that is able to easily manage the rigid-body motion of the particles and to eval-
uate directly the hydrodynamic interactions, without approximations. So, we can obtain a combined weak for-
mulation of the particle and fluid domain. This weak form has been discretized through a finite element
method. The advantages of this procedure are: (i) a time-independent mesh can be used, (ii) the particle
domain is discretized through the particle boundaries only (rigid-ring description) and (iii) the rigid-body
motion constraints are imposed by means the Lagrange multipliers (that are related to the traction force
on the particle boundaries).

In order to demonstrate the feasibility of our method, we performed 2D simulations with an high number
of the particles (150 and 225) in order to recover the bulk properties of a Newtonian suspension, by neglecting
the fluid and particle inertia.

The local distribution of the flow and stress fields as well as the bulk properties are evaluated. These last
ones are related to the bulk stress calculated through the Batchelor formula [7] where a particle and a fluid
contribution are taken into account.

The results showed a very good agreement with dilute theory as well as other numerical simulations in the
literature. In particular, for low particle area fractions, the relative bulk viscosity approaches the Einstein’s
analytical solution. By increasing the area fraction, the viscosity increases as well according to an exponen-
tial-like trend, as shown in the experiments. For concentrated systems, our results agree with the results of
Hwang and Hulsen [3], obtained by using a different scheme. Finally, as in [3], we found an anisotropic struc-
ture where the particles are slightly farther apart along the horizontal direction than along the vertical direc-
tion. However, according to our calculations, the anisotropy is less pronounced than in [3]. Moreover, we do
not observe any start-up phase.

Our scheme can be easily extended to 3D problems as well as to suspensions of viscoelastic fluids. In par-
ticular, to circumvent the memory limitations in 3D simulations, iterative solvers and parallel calculations will
be required.
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